24 research outputs found

    Quality assessment by region in spot images fused by means dual-tree complex wavelet transform

    Get PDF
    This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process

    An efficient methodology to simulate mixed spectral signatures of land covers through Field Radiometry data

    Get PDF
    An efficient methodology to simulate mixed spectral signatures of land covers, from endmember data, using linear statistical modelling based on the least squares estimation approach, is proposed. The optimal set of endmember has been obtained by measurements in situ with a field spectroradiometer GER 1500. Also, it is proposed the use of new sub-pixel methods based on statistics and certain “units of sampling” to apply to the landscapes. The resultant point estimations for these new units will be the “observations” and all of them will carry out an special role to simulate the final spectral signature. This methodology is used to simulate spectral signatures of a Mediterranean forest landscape near to Madrid (Spain). Furthermore the spectral signature model obtained through Field Radiometry data will be correlated with the image data of the same zone provided by the Landsat 7 Enhaced Thematic Mapper Plus (ETM+) sensor once corrected. The results obtained in correlation studies seem to conclude its efficiency. At the same time, the results open new research guidelines

    Analysis of Thematic Classified Aerial Images Trough Multispectral and LIDAR Data

    Full text link
    The application of thematic maps obtained through the classification of remote images needs the obtained products with an optimal accuracy. The registered images from the airplanes display a very satisfactory spatial resolution, but the classical methods of thematic classification not always give better results than when the registered data from satellite are used. In order to improve these results of classification, in this work, the LIDAR sensor data from first return (Light Detection And Ranging) registered simultaneously with the spectral sensor data from airborne are jointly used. The final results of the thematic classification of the scene object of study have been obtained, quantified and discussed with and without LIDAR data, after applying different methods: Maximum Likehood Classification, Support Vector Machine with four different functions kernel and Isodata clustering algorithm (ML, SVM-L, SVM-P, SVM-RBF, SVM-S, Isodata). The best results are obtained for SVM with Sigmoide kernel. These allow the correlation with others different physical parameters with great interest like Manning hydraulic coefficient, for their incorporation in a GIS and their application in hydraulic modeling

    Landcover degradation analysis of Mediterranean forest by means of hyperplanes obtained from mixture linear algorithms (MLA)

    Get PDF
    The percentage alteration of the Mediterranean forest landscape is one of the primary indicators for its degradation. In this sense, the land cover abundances change analysis by using mixture linear algorithms (MLA), is presented like a good alternative to study this degradation. This research analyzes the use of two information sources like Remote Sensing (Landsat-ETM+) and Field Radiometry (GER 1500) to obtain mixture hyperplanes. These are calculated by models based on least square estimations, assuming that each pure land cover (endmember) belonging to any geographic area, behaves as a random variable which distribution function is known. The mixture hyperplanes provide spectral signatures with a suitable correlation level with regard to the supplied from remote satellite sensors once corrected, for the same geographical zone. These established hyperplanes can be used in future researches about Mediterranean forest landscape changes, because they can represent the different levels of its degradation. In this sense, it is proposed that they will feed a land cover spectral library with free accessibility

    Improving parameters selection of a seeded region growing method for multiband image segmentation

    Get PDF
    In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image

    A new approach to change detection in multispectral images by means of ERGAS index

    Get PDF
    In this letter, we propose a novel method for unsupervised change detection (CD) in multitemporal Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) satellite images by using the relative dimensionless global error in synthesis index locally. In order to obtain the change image, the index is calculated around a pixel neighborhood (3x3 window) processing simultaneously all the spectral bands available. With the objective of finding the binary change masks, six thresholding methods are selected. A comparison between the proposed method and the change vector analysis method is reported. The accuracy CD showed in the experimental results demonstrates the effectiveness of the proposed method

    A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps

    Get PDF
    The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving ma

    Optimizing panchromatic image change detection based on change index multiband image analysis

    Get PDF
    This work proposes an optimization of a semi-supervised Change Detection methodology based on a combination of Change Indices (CI) derived from an image multitemporal data set. For this purpose, SPOT 5 Panchromatic images with 2.5 m spatial resolution have been used, from which three Change Indices have been calculated. Two of them are usually known indices; however the third one has been derived considering the Kullbak-Leibler divergence. Then, these three indices have been combined forming a multiband image that has been used in as input for a Support Vector Machine (SVM) classifier where four different discriminant functions have been tested in order to differentiate between change and no_change categories. The performance of the suggested procedure has been assessed applying different quality measures, reaching in each case highly satisfactory values. These results have demonstrated that the simultaneous combination of basic change indices with others more sophisticated like the Kullback-Leibler distance, and the application of non-parametric discriminant functions like those employees in the SVM method, allows solving efficiently a change detection problem

    A Multistage Change detection methodology applying statistical multisource

    Full text link
    Assessment and detection of environmental changes is one the most frequent applications in remote sensing. As a result, there has been a great proliferation of research on this particular topic, leading to different methodologies for detecting changes (Radke 2005, Foody 2009, Kennedy 2009) from data supplied by multitemporal images acquired from spaceborne sensors. The basic objective in a change detection process is to detect groups of pixels that are "significantly different" within a set of registered images of the same geographic area. Moreover it must be taken into account that in the recent decades, advances in space technologies made possible to collect a large amount of information about the Earth Surface and its environment. Since these data have been acquired from multiple sources, their quantitative exploitation requires optimal strategies to benefit from their interactions, so that information of high quality and great applicability for the proposed objectives can be extracted. (Petit 2001

    Classification of Satellite Images by means of Fuzzy Rules generated by a Genetic Algorithm

    Full text link
    The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification proces
    corecore